TECP — Tutorial Environment for Cryptographic
Protocols

Jelena Zaitseva, Jan Willemson, Jaanus Poial
Department of Computer Science, University of Tartu, Estonia
e-mail: jellenQut.ee, jan@ut.ee, jaanusQut.ee

Abstract

The availability of educational cryptography software is insufficient
nowadays, especially for public key cryptography. We have developed a
new software tool for teaching public key cryptography based on mod-
ular arithmetic. This tool is a tutorial environment allowing stepwise
construction of public key cryptography protocols and demonstration of
their work. It enables visualization of protocols (with values of secret
parameters and intermediate results), allows adding/removing communi-
cating parties, allows adding/editing/removing of arbitrary parameters
(with dynamic recalculation of dependent parameters), handles number-
theoretic and cryptographic primitives (modular arithmetic, prime num-
bers, generators, hash functions, etc.), allows working with gigantic inte-
gers, saves/loads constructed protocols. By means of these features the
user is provided with flexible and configurable tutorial environment.

Keywords: tutorial environment, public key cryptography, modu-
lar arithmetic, visualization

1 Introduction

Since the importance of cryptography has lately greatly increased,
it is very important to offer corresponding teaching courses for spe-
cialists in this area.

There is almost no educational software that would help to study
this discipline. The only resource the authors managed to find was
[6]. It includes only nine educational programs concerning symmet-
ric Caesar cipher, block ciphers DES, Blowfish, IDEA and ElGamal
public key encryption algorithm. It is also disappointing that there
is much less educational software available explaining public key

cryptography than the software explaining symmetric algorithms.
This specific part of cryptography however should be available with
all its nuances. Experience has shown that some students initially
cannot understand how it is possible to code some information by
one key and decode it by another one.

It is easy to conclude the necessity of public key cryptography
teaching software. Such a software must explain the idea of public
key cryptography, discover nuances and assist in understanding pub-
lic key cryptography techniques. It will hopefully accelerate learning
of this discipline.

The rest of the paper is organized as follows: section 2 describes
requirements to the tutorial environment, section 3 gives a brief ac-
quaintance with possibilities of TECP and describes the representa-
tion of cryptographic protocols, section 4 describes the possibilities
of using TECP, section 5 gives a short description of implementation
of TECP, section 6 — Conclusions and Further Work.

2 Problem Formulation

First, we analyzed primitives needed for PKC [16]. We had in mind
the following protocols: Diffie-Hellman key exchange algorithm [2],
RSA signatures and encryption schemes [12], Rabin public-key en-
cryption scheme [13], ElGamal signature and encryption schemes
[3, 4], DSA [10], Chaum’s blind signature scheme [1].

The analysis of the cryptographic schemes shows that the tutorial
environment must be able to perform the following mathematical
operations:

e enable visualization of protocols, including values of secret pa-
rameters and intermediate results (all values can be arbitrary
large),

e allow adding/removing communicating parties,
e allow adding/editing/sending/removing arbitrary parameters,

e handle the next number-theoretic and cryptographic primi-
tives:

— calculation of a mod b, a — b, a+ b, a-b, a/b, a°,
— calculation of a® mod n (—1 can also be a value of b),

— calculation of ged(a, b),

— calculation of hash value of m,

— generation (and verification) of the prime numbers,

— generation (and verification) of a number from Z,, (Z}),

— generation (and verification) of a generator of Z?, provided
n is a safe prime number, i.e. n = 2-a + 1, where a is a
prime number. We require such a condition to be able to
generate and verify efficiently a generator of Z;,

— generation (and verification) of a number congruent to
a mod b,

where a, b, n and m are some positive integers.

3 Overview of Tutorial Environment

The tutorial program — TECP — is a visual environment for cre-
ation and manipulation of cryptographic protocols based on mod-
ular arithmetic (a good overview of such protocols can be found
in [9, 14]). Its main part is the workfield where protocols can be
created and visualized.

Protocols are viewed as sequence diagrams. By means of such
diagrams the communicating parties that commit protocol steps are
represented. The possible steps are generation of keys, calculations
of auxiliary parameters and data transmission.

The environment has a set of tools for operating on different
components of protocols, i.e. on communicating parties and protocol
steps (protocol variables and data transmissions) [16]. At any time
all protocol parameters can be changed by the user on the fly.

3.1 Representation of Protocol Components
Figure 1 presents a screenshot of the tutorial environment.
Parties. There are three types of parties: a regular party, an eaves-

dropper and a public authority.

e Regular party can create and calculate different protocol vari-
ables, and transmit data to any other party.

X

File Edit ¥iew Help

DEE|lo> 860 |0k|/

p= 31|? =fF
q=397<p
n=p*y=125549
phi = (p=1)%(g-1) = 123136
B = 37645 <25y

d =e mod phi = 16933

f, e————————— n, e
n, e
m=124309<Z

¢ =m"mod n = 32146

i C c

C

m1 = ¢ mod n = 124309

Figure 1: A Screenshot of the Tutorial Environment

e Favesdropper is a regular party with a possibility to know all
data transferred from one party to another, even if the eaves-
dropper is not a recipient. It can create and calculate different
protocol variables, and transmit data to any other party.

e Public authority is a regular party able to share all received
data with all other existing parties. It can create and calculate
different protocol variables, and transmit data to any other
party as well.

Protocol Variables. A created variable appears under a creating
party as the next step of the protocol. If the value of a variable is
more than 15 symbols long, only the first 5 and the last 5 symbols of

the value of protocol variable will be displayed with dots in between.
In this case, value of a variable can be seen by its fly-by hint or in
the special window (’All Values’), which contains information about
the values of all protocol variables and all the parties containing
them.

Data Transmissions. FEach data transmission is represented by an
arrow from a sending party to a recipient with transmitted protocol
variables on/above it.

4 Usage of Tutorial Environment

In this section, considerations on how the software can be used dur-
ing the studying process are presented.

Getting to understand communication protocols. The first step stu-
dents can take for understanding the idea of a protocol is to con-
struct one using the tutorial environment.

Before constructing a protocol student often does not understand
basic principles by which the protocol works, in spite of being fa-
miliar with the theoretical side of this theme. During the modeling
process of the protocol comes understanding of its structure and
working principles.

Visualization of numerical values of all parameters. The software
enables visualization of numerical values of all parameters (protocol
variables). It is considered to be significant for understanding the
mechanism of the work of a protocol.

Usually, when discussing protocols at lectures using blackboard-
and-chalk presentations, actual values of protocol parameters in-
cluding hash values are not displayed to students due to their lengthy
nature.

The tutorial environment gives convenient tools to illustrate op-
erations with large integers including hash operations. Students can
see the value of hash function themselves (Figure 2), and perform
different operations with it.

Eile Edit View Help

All Values

EHo> B0 [W|”

~# Bin # Dec # Hex

Alice

p=5371393606024775251 2565504367 7356597 7406724 26915234:
alpha=873195334 737642764 52865753269468
a=01789621205446379008763236626330764 5452043765654 A2 06¢
heta=3100645385114119274013032070581975714862354610087

|
p=93713..70203 =P,

k=175516763937699235364T76535087554335
r=27117234515939759760399552030263552801604536575057 34
m=28141022664630593955534118180365265666566

<a\pha—8731‘p 53713936068024775251 2565504357735658774067242631 52942136415762762610562554151599074307669011860475203 p152¢]

a=@7a. s =2,
beta = alpha® mod p = 61006..04168
n, alpha, heta———m
B, alpha, heta
k= 17551. 5|4335 =25
r= alpha" mad p = 27117..795955
m = 261418566 = 7
p1=p-1-=53713 78202
= him) = 1|3731 00217
= (k! " {h - a) mod p_1 = 29658..39733

T, M, s————in

rms
|

v2 = alpha"™ mudlp = 1054153577

= (tbeta’ mod py*(* mod pi) mod p = 10541,

P, a\ph:a, het|

r

59977

m

B

h=13731904 0064886657 9506035049521606996722986000217
§=20658912163221798753371608283953065555673936887873477

Baob

P=53713936060247752512565504367 7356097 74067 2426915294¢
alpha=673135934737642764 5266575320 9466
heta=8100645385114119274013032070581975714862354610087
r=271172345169597597603395520302A3562601604536575057 34
m=28141022664630593955347181803652656566586
5=23A50512163221 736753537 160620839530AG5556G7 993607073471
¥1=10541159653195683259 760086261 6410571 36865001 7005358,
¥2=105411596531956063259760086261 641051 36865001 7O0595E]

Eve

p=5371393606024775251 2565504367 7356597 7406724 26915294:
alpha=87319593473764276452865703209466
beta=810064538511411927401303207056819757 1486235461 0087
r=27117234518939750978039955203026358250160453657505734
m=2814102266463059335594118160365265666586

$=2965091 2183221 7967533716082039530685556799368787347:

T I] |
i

Figure 2: ElGamal Signature Scheme

alpha

; a/ beta o OF
e \
\ b‘
mQ /
‘ O's
O vl

Figure 3: Dependency Graph of Protocol Variables

Possibility to change values of protocol variables.

The other thing

which definitely can help understanding the protocol, is the possi-
bility to change the value of any protocol variable.
All protocol variables dependent on the edited one will be re-

calculated /regenerated on the fly. It becomes possible due to the
dependency graph of protocol variables. In the case of ElGamal
signature scheme (Figure 2) this graph is presented in Figure 3.

The change of the value of p causes the regeneration of alpha, a,
k and m, and recalculation of beta, r, p_1, h, s, v1 and v2. Change
of k, however, influences the values of r, s and vl. Change of the
value of a protocol variable should convince students in the proper
work of the protocol — values v1 and v2 remain equal.

Problem generation For tutors, the environment provides efficient
means for generating different problem instances based on the same
protocol.

E.g. a standard problem on RSA states that it is possible to
recover the encrypted message if it encrypted using the public ex-
ponent e = 3 with three different moduli.

With TECP, an instance of this problem can be generated simply
by regenerating six prime numbers.

Experimenting with protocols. Possibility of changing the protocol
(addition/removal of a party, addition/change/removal of transmit-
ted data, addition/change/removal of a protocol variable) gives the
ability to see how it influences the security of a protocol.

In the simplest example of RSA encryption scheme (Figure 1),
suppose, Alice sends not only n and e, but n, phi and e. In this case
the user can ask Eve to calculate Alice’s private key, and hence, to
get to know what message Bob has sent (Figure 4).

Man-in-the-middle attacks can also be constructed using TECP.

5 Implementation

The tutorial environment was written using BorlandU Kylix(J 3
Open Edition and Borland[d Delphill 6 Personal Edition, and is
available under GPL. It can be used on Linux and/or Windows
machines.

Freeware package FGInt [11] and TParser 10.1 [5] were used in
program implementation.

The tutorial environment can be downloaded from [15].

Eile Edit ¥iew Help
DMl (80|~

Hob
|
p=317<p
q=397 =P
n=p*g=1256439
phi = (p—‘l)"(T‘I) = 125136
g= 3?615 € Zoni
d=e! mod phi = 16933 .
N, phi, e————M n, pfﬂ,]
n, phi, e I

m=124303 =&,

o =m®mod n=32146

- c c
cC
m1 = c mod n = 124309
d_a=e" mod phi = 16933

m_a = ¢ mod n = 124309

Figure 4: Successful Attack on RSA Encryption

6 Conclusion and Further Work

We have developed a new multi-platform (Linux/Windows) software
tool for teaching public key cryptography based on modular arith-
metic. This is an attempt to fill the gap in public key cryptography
educational software.

The tool developed is a tutorial environment allowing stepwise
construction of public key cryptography protocols and demonstra-
tion of their work.

TECP was used at the course 'Introduction to Cryptology’ con-
ducted of the University of Tartu in the fall term 2002. The course
examination has shown that in contrast to past years examinations
the amount of students who has failed it, is decreased. Although

we do not have enough statistical data to judge this result, TECP
proved to be a comfortable tool for a lecturer to teach and a stu-
dent to experiment with protocols. It will undoubtedly be used
during future courses as well. Further development of the tutorial
environment can involve addition of some mathematical operations
(concatenation, for example) and addition of new modules enabling
constructing cryptosystems based on sparse polynomials [7] and el-
liptic curves [8].

Acknowledgments

The authors thank Estonian IT Foundation for support.

References

[1] Chaum, D. Blind signatures for untraceable payments. Ad-
vances in Cryptology - Proceedengs of Crypto 82, pages 199-203,
1983.

[2] Diffie, W. and Hellman, M.E. Multiuser Cryptographic Tech-
niques. Proceedings of AFIPS National Computer Conference,
pages 109-112, 1976.

[3] ElGamal, T. A Public-Key Cryptosystem and Signature
Scheme Based on Discrete Logarithms. Advances in Cryptol-
0gy: Proceedings of CRYPTO 84, Springer-Verlag, pages 1018,
1985.

[4] ElGamal, T. A Public-Key Cryptosystem and Signature
Scheme Based on Discrete Logarithms. IEEE Transactions on
Information Theory, I'T-31(4):469-472, 1985.

[5] Hoffmeister, S., Flaider, A., and Schaaf, R. TParser
10.1 for Borland Delphi - a component for parsing and
evaluating mathematical expressions specified at runtime.
http://www.datalog.ro/delphi/parser.html, May 2003.

(6] Black Wolf’s homepage. Cryptography.
http://home.od.ua/~ blackw/Crypt/crypt.html, May 2003.

[7] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU:
A Public Key Cryptosystem, August 1999.

[8] Koblitz, Neal. Algebraic Aspects of Cryptography. Springer
Verlag, January 1998.

[9] Menezes A.J., P.C. van Oorschot, and Vanstone, S.A. Handbook
of Applied Cryptography. CRC Press, October 1996.

[10] National Institute of Standards and Technology. Digital Signa-
ture Standard (DSS). FIPS 186-2, January 2000.

[11] Othman, Walied. Fast gigantic integers package.
http://triade.studentenweb.org/GlInt/gint.html, May 2003.

[12] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communi-
cations of the ACM, 21(2):120-126, February 1978.

[13] Rabin, M.O. Digitalized signatures and public-key functions
as intractable as factorization. MIT Laboratory for Computer
Science, Technical Report, MIT/LCS/TR-212, 1979.

[14] Arto Salomaa. Public-Key Cryptography. Springer-Verlag, 2nd
edition, 1996.

[15] TECP homepage. http://www.math.ut.ee/” jellen/TECP,
June 2003.

[16] Jelena Zaitseva. TECP - Tutorial Environment for Crypto-
graphic Protocols. MSc Thesis, 2003.

10

