Implementation of Directed Multigraphs in Java

Jaanus Poial
University of Tartu, Estonia

jaanus@cs.ut.ee

ABSTRACT

An implementation of directed multigraphs is introduced
for teaching course on algorithms and data structures with
Java.

Categories and Subject Descriptors

E.2 [Data]: Data Storage Representations— Object
representation;

E.1 [Data]: Data Structures—Graphs;

D.3.3 [Software]: Programming Languages—Java

1. INTRODUCTION

There are different implementations of the graph abstract
data type depending on programming paradigm used and
problems to be solved. When teaching algorithms and data
structures with Java we need a reference implementation for
graphs that has good features from both object oriented and
algorithmic viewpoint. Object oriented style puts emphasis
on reusable components, modeling and decomposition, al-
gorithmic approach concentrates more on complexity issues,
memory management, etc. For example, a linked list in Java
is a part of standard API, in practice it is preferred to reuse
this implementation instead of inventing a new one. On the
other hand, implementing a linked list is an important skill
when learning about data structures. This is not a real con-
tradiction, we can always instruct students to produce their
own linked list implementation from scratch.

In case of graphs, we have implemented basically the same
idea in two ways. The first is a direct memory structure that
reinvents list operations, the second is more object oriented
and reuses existing API. The result is somewhat amazing:
direct implementation instead of delegation is much shorter.
On the other hand, it is less transparent and more sensitive
to later changes.

Our program can be used both as reference implementa-
tion for graphs and API extension for solving graph prob-
lems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2003 ACM ...$5.00.

2. BASIC STRUCTURE
FOR DIRECTED MULTIGRAPHS

(Multi)graph G = (V, E) counsists of final set of vertices V'
and final (multi)set of edges ECV x V .

We allow multiple edges between the same pair of vertices,
even loops, also we consider all pairs ordered (edges are di-
rected). In case we need an undirected edge (arc) {u,v} we
model this using two directed edges (u,v) and (v, u) .

The basic structure can be expressed as follows:

1. The graph is represented by an object that contains
list of vertices.

2. Each vertex is represented by an object that contains
list of outgoing edges.

3. Each edge is represented by an object that contains
(pointer to) its end-vertex.

As we can see this is very similar to the adjacency list
structure used in [1] but not symmetrical: we do not pay
attention to incoming edges (all edges are outgoing edges
for some vertex and only edge itself knows where it goes).

This structure has the following benefits:

1. Each object (graph, vertex, edge) has exactly one rep-
resentative, all updates (insert, delete) made to the graph
are ”local” (only one of the lists is changed).

2. Graph is scalable and dynamic (we do not use static
containers).

3. This representation is complete (we can implement all
operations, but not all operations are efficient, e.g. iterator
over incoming edges).

Power of polymorphism often hides complexity issues, we
do not know the price of components we use. Starting ev-
erything from scratch is sometimes a good idea, but usually
dangerous and time consuming. Maybe it is useful to intro-
duce complexity information into method declaration, start-
ing, for example, from special javadoc-comments. Informal
descriptions already appear in standard Java API documen-
tation but do we need something stronger and more formal?

Our implementation of directed multigraphs relies mostly
on LinkedList class from java.util package, many of op-
erations are finally delegated to some LinkedList object.
On the other hand, if search speed becomes crucial, we can
easily replace LinkedList to something more efficient, only
four lines of code need to be rewritten.

3. REFERENCES

[1] M.T.Goodrich, R.Tamassia. Data Structures and
Algorithms in Java. John Wiley and Sons, 1998, 738 pp.

