Implementation of Directed Multigraphs in
Java

January 28, 2003

Abstract

In this paper we discuss some problems of implementation of graphs
in object oriented programming languages. We have chosen directed
multigraphs as the most general type of graphs and Java as a program-
ming language. Java is often used as the first programming language
in teaching computer science. Unfortunately, sometimes complexity
of algorithms remains hidden in object oriented framework, and it is
not obvious which methods are preferred.

We propose an implementation of graphs that is similar to adja-
cency list structure, introduced, for example, in [1] but our model does
not duplicate any references that makes graph updates more efficient.

1 Motivation

Graphs and graph algorithms are significant topics in university degree courses
like ”Computer Science” or ”Algorithms and Data Structures”. There are
different implementation strategies for the graph abstract data type depend-
ing on programming paradigm used and problems solved.

We have chosen Java as the first programming language in teaching in-
stead of Pascal that was used for many years. This change has caused some
difficulties in introducing classical data structures and mathematical ”ob-
jects” (like graphs). This is mainly a problem of second programming course
that needs to cover themes both from object oriented programming and algo-
rithms and data structures. Object oriented style puts emphasis on modeling



and decomposition, algorithmic approach concentrates on effective imple-
mentation, memory management, etc. For example, ”linked list” in Java is a
part of standard API, it is preferred to reuse this implementation instead of
inventing a new one. On the other hand, implementing a ”linked list” data
structure is an important skill when learning data structures and algorithms.
This is not a real contradiction, we can always instruct students to produce
their own ”linked list” from scratch, but sometimes such an approach con-
fuses the audience.

In case of graphs, we have implemented basically the same idea in two
ways. First is direct "translation” from Pascal pointer structure, second is
more object oriented trying to reuse existing API. The result is somewhat
amazing: direct implementation instead of delegation is much shorter. On
the other hand, it is less transparent and more sensitive to later changes.
As these implementations have the same complexity, we introduce only the
second approach in this article and leave the ”direct” way mentioned above
as an exercise for potential programming class.

This program can be used both as reference implementation for graphs
and API extension for solving graph problems. Some methods are more
recommended to write efficient programs, some are introduced to make this
implementation as complete as possible.

2 Basic structure for directed multigraphs

In object oriented approach we need to decompose our domain terms into
classes: "graph”, "vertex”, "edge”, etc. Each class has its own responsibili-
ties, implemented via methods. Starting from method descriptions it is not
easy to find an underlying structure. We can spend hours creating lists with
"useful” and ”universal” method signatures (people having ADT experience
tend to love this), but still have no idea about efficient way to implement
these operations.

Let us start from the basic structure.

(Multi)graph G = (V, E) consists of final set of vertices V and final
(multi)set of edges ECV x V.

We allow multiple edges between the same pair of vertices, even loops,
also we consider all pairs ordered (edges are directed). In case we need an
undirected edge (arc) {u,v} we model this using two directed edges (u,v)
and (v, u) .



Basic structure can be expressed in following three sentences.

1. The graph is represented by object that contains list of vertices.

2. Each vertex is represented by object that contains list of outgoing
edges.

3. Each edge is represented by object that contains pointer to its end-
vertex.

As we can see this is very similar to the adjacency list structure used
in [1] but not symmetrical: we do not pay attention to incoming edges (all
edges are outgoing edges for some vertex and only edge itself knows where it
goes).

This structure has the following benefits:

1. Each object (graph, vertex, edge) has exactly one representative, all
updates (insert, delete) made to the graph are "local” (only one of the lists
is changed).

2. Graph is scalable and dynamic (we do not use static containers).

3. This representation is complete (we can implement all operations, but
not all operations are efficient, e.g. iterator over incoming edges).

4. Most algorithms use outgoing edges only. If, for example, we need to

count incoming edges in topological sort algorithm, we can use the vertex
workfield.

3 Implementation

The following classes and methods are implemented. get- and set-methods
have no side-effects, they only read and write corresponding fields. Construc-
tors integrate new objects to existing structure. All objects contain identifier
(used in search methods) and two workfields: one for objects and another
for numerical results. The workfields have no importance now, we could
introduce these later in subclasses.

Mostly semantics of methods is obvious, few additional explanations fol-
low. Full source code and javadoc-documentation are available on authors
web-page.

3.1 Class Graph

Graph contains a list of vertices. Main vertex operations are delegated to
this list.



Graph (Comparable id)

public Comparable getId()
public void setId (Comparable c)

public List getVertexList()
public void setVertexList (List 1)

public Object getGObject()
public void setGObject (Object o)

public int getGInfo()
public void setGInfo (int i)

public Iterator vertices()
public Iterator edges()

public String toString()
public Object clone() throws CloneNotSupportedException

public boolean insertVertex (Vertex v)
public Vertex findVertex (Comparable id)
public boolean removeVertex (Vertex v)

public boolean insertEdge (Edge e, Vertex from, Vertex to)
public Edge findEdge (Comparable id)
public boolean removeEdge (Edge e)

public Iterator edgesBetween (Vertex from, Vertex to)

From these methods removeVertex is not efficient, it removes vertex to-
gether with both outgoing and incoming edges, but incoming edges are avail-
able only through filtering all edges. Iterator edges is complex, it iterates
over list of lists.

3.2 Class Vertex

Vertex contains a list of outgoing edges. Most operations on edges are del-
egated to this list. In addition, vertex contains reference to the graph it
belongs to.

Vertex (Comparable id, Graph g)

public Comparable getId()
public void setId (Comparable c)

public List getEdgeList()



public void setEdgeList (List 1)

public Graph getGraph()
public void setGraph (Graph g)

public Object getVObject()
public void setVObject (Object o)

public int getVInfo()
public void setVInfo (int i)

public Iterator outEdges()
public Iterator inEdges()

public String toString()

public boolean insertOutEdge (Edge e, Vertex to)
public Edge findOutEdge (Comparable id)
public boolean removeOutEdge (Edge e)

3.3 Class Edge

Edge contains references to its end-vertices.
Edge (Comparable id, Vertex from, Vertex to)

public Comparable getId()
public void setId (Comparable c)

public Vertex getToVert()
public void setToVert (Vertex v)

public Vertex getFromVert()
public void setFromVert (Vertex v)

public Object getEObject()
public void setEObject (Object o)

public int getEInfo()
public void setEInfo (int i)

public String toString()
public void changeFromVert (Vertex v)
public void reverse()

Method changeFromVert is introduced to make structural change in the
graph: moving current edge to another list of outgoing edges.



4 Discussion

Mathematical ”objects”, ADT and classical data structures are not easy
to explain and implement using object oriented approach, partially because
there are so many possibilities to build corresponding OO-models. There
is no single solution for complex structures like graphs (the other interest-
ing topic related to implementation of classical data structures in Java is
influence of programmers previous experience).

Power of polymorphism often hides complexity issues, we do not know the
"price” of components we use. Starting everything from scratch is sometimes
a good idea, but usually dangerous and time consuming. Maybe it is useful
to introduce complexity information into method declaration, starting, for
example, from special javadoc-comments. Informal descriptions already ap-
pear in standard Java API documentation but do we need something stronger
and more formal?

Our implementation of directed multigraphs relies on LinkedList class
from java.util package, most of operations are finally delegated to some
LinkedList object. On the other hand, if search speed becomes crucial, we
can eagsily replace LinkedList to something more efficient, only four lines of
code need to be rewritten.

References

[1] M.T.Goodrich, R.Tamassia. Data Structures and Algorithms in Java.
John Wiley and Sons, 1998, 738 pp.



