A-superposition of Stack Languages

Jaanus Poial

Institute of Computer Science
University of Tartu, Estonia
e-mail: jaanus@cs.ut.ee

Abstract. There exists a class of widespread languages that use stack
machines for interpretation of programs, the so called stack based lan-
guages (Java virtual machine language, Forth, Postscript, several inter-
mediate program representation languages and low level languages in
some embedded systems). Semantics of stack operations determines the
language of correct programs in sense of parameter passing through the
stack. This is one alternative method to define the syntax of a stack based
language, the so called stack effect calculus. The other method is based
on systems of syntactic equations (general rewriting rules for terminal
sequences) on sequences of stack operations. Both methods seem to have
better expression power for the stack based languages than traditional
context free grammars.

Below we introduce stack language using the stack effect calculus ap-
proach and define a new operation on stack languages called A-super-
position. This operation reflects a naive way of combining stack machine
programs that seems to cover all possibilities. But it occurs that given two
command systems both defining a stack language the resulting ”mix-
ture” of these two systems may generate more powerful language than
A-superposition of initial languages. If that is not the case we call these
systems non-intervening. Using non-intervening command systems it is
easy to predict behavior of mixed programs (it is restricted to properties
of A-superposition) otherwise we need to consider synergetic effects.

Keywords: Formal Language Theory, Inverse Semigroups,
Formal Methods, Programming Languages, Stack Machines

1 Introduction

Code analysis is an important issue in verification, optimization, paralleliza-
tion, transformation and other formal manipulations on computer programs. In
many cases the code is interpreted by stack machines like Java virtual machine,
some (embedded) Forth system, Postscript device, Common Language Runtime
(MSIL/CLR, see [3]), etc. Stack machine code is an interesting and amazingly
non-trivial mathematical object to describe. But without a formal model it is
impossible to solve any of the problems mentioned above.

Stack operations are often described using stack effects defining what are
the input parameters and what are the output parameters of an operation. Stack
effects as a formal model was introduced in [5]. This theory was applied to code

generation using syntax directed translation schemes (verification of a scheme
instead of verification of individual targets, see [11] about compiler technique).
In [6] stack machine programs with control structures were investigated. Similar
approach to stack effect calculus was also used in [12]. It is not always easy
to express the stack language determined by stack effects using context free
grammars (see examples in [10]).

Quite interesting for the author attempt to apply Floyd-Hoare style formal
axiomatics to stack based languages was made in [7].

In [8] the idea of syntactic equations to describe stack machine code sequences
was introduced. Such equations also describe a language that can be equal to the
language determined by stack effects. Later this approach was applied to Java
byte-code patterns ([9]).

When we have two stack languages each defined by some set of stack effects
we need to know if it is safe to run programs of these languages on the same stack
machine simultaneously. Or, vice versa, is it possible to split certain command
system to ”independent” parts that can run on different machines.

In this paper we introduce two new notions to support investigation of these
problems. At first, we model a ”safe combination” of two stack languages via
A-superposition and then prove that not all possible combinations are safe. Sec-
ondly, we define non-intervening command systems that generate only ”safe
combinations”.

Properties of stack based languages and their implementation (Forth, Post-
script, JVM code, etc.) have been investigated also by other groups (e.g. [1] and
lately [2]).

2 Preliminaries

We recall some basic definitions from [10].
Let T be an alphabet (a finite set of different ”types”).

We denote the "stack effect” (o,) € T* x T* by (@ ——) and introduce
the zero element 0 to report errors: (00,00) = 0, « is a list of input parameter
types passed through the stack and f is a list of resulting output parameter
types (rightmost element corresponds to the top of the stack). 0 indicates type
mismatch when a stack operation receives input of ”wrong” type.

The set of stack effects is defined: S = (7T* x 7*) U {0}
The composition (product) of stack effects is determined by three rules
(1) Vs€S:s0=0s=0
(2) Vs1,82,t1,t2,, 3 € T :
(s1 —— s2)(asy —— t2) = (as1 —— t2)
(s1 == Bt1)(tr —— t2) = (s1 —— Bt2)

(3) In all other cases the result is 0 .

Pair (——) is the unit for composition and we use symbol 1 to express this.

This algebraic structure is (isomorphic to) the polycyclic monoid - certain
0-bisimple inverse semigroup (see [4]).

Let us have a set of stack operations A.

Mapping sig : A* — S that binds stack effects to stack operations is defined
as homomorphism

sig(A) =1 for empty program A,

sig(pq) = sig(p)sig(q)

Let us define a stack language L(A) as

L(A) ={w]| we A" : sig(w) =1}

As we see the empty word A is always included.

3 A-superposition

Let I' C A be a subset of stack commands. This set is said to be a command
system if all the commands are ”useful” in sense of

Vpe I Jwy,wy € I' :wipwy € L(I')
For empty set () we define L(0) = {A}.
Proposition 1. If It C A and I3 C A then
L(I) N L(I) = LI N I)
L(IY) U L(I3) € LI U DY)

Proof. I't1 NI, is a subset both in I and I5. If w € L(I7 N I%) then, obviously,
w € L(IT) and w € L(IY), i.e.

L(I'' N T) C L(IY) N L(I)

If w € L(IN) and w € L(I3) then w € (I1 N Iy)*. We also know that
sig(w) = 1. Consequently, w € L(I1 N I[3).

The second inclusion also follows from the definitions. L(I'7UT,) may contain
"mixed” sequences, so, in general, the equality does not hold. O

Definition 1. A-superposition o of stack languages L(I) and L(I%) is defined
as follows
(1) If w € L(I') U L(I3) then w € L(I7) o L(I%);
(2) If 'v" € L(I1)o L(I3) and v € L(I)o L(I%) then u'vu” € L(I1)o L(I3);
(8) There are no other words in the A-superposition than these introduced by

(1) and (2).

This definition is symmetric w.r.t. I1 and I's. We can substitute the empty
word A to any existing word w (where sig(w) = 1) anywhere we want to. That
is why the operation is called ”"Lambda-superposition”.

Theorem 1. The following subset relations hold
L(IN) UL(Iy) C (1) o L(IR) C L(IT U Iy)

Proof. The first inclusion is trivial following from (1).

For the second part we first notice that L(I7)UL(I[%) C ITULy C (ITUIY)*.
Having words v/, u”,v € (I'1 U I3)* also v'vu” € (I'1 U I3)* holds. If we choose
u',u” and v as stated in (2) we get L(I7) o L(Iy) C (I71 U Iy)*.

We know that w € L(I) U L(I3) yields sig(w) = 1.

If we have sig(u'u") = 1 and sig(v) = 1 then

sig(u'vu'") = sig(u')sig(v)sig(u”) = sig(u')sig(u”) = sig(u'u") =1
Consequently, v'vu" € L(I1 U I3) and the theorem is proved. O

Ezample 1. Let T = {k,l,m},
I ={a,b,c,d},
I; = {eafvg}

We can calculate signature products immediately for the following words to
show that:

abd, aabdbcbd € L(I1)

efg, efefggefg € L(I3)

abefgd, eabebdfg, eaefgbdfg € L(I7) o L(Iy) \ (L(I1) U L(I3Y))

af, ebcfg, ebdg € L(I1 U Iy) \ (L(I1) o L(I}))

This example demonstrates that, in general, all subset relations in the theo-
rem are strict. These two command systems put together produce more programs
than the result of their A-superposition (A-superposition is not powerful enough
to express the process of construction of stack languages).

Definition 2. Two command systems Iy, I3 C A are said to be non-intervening
’LfL(Fl) OL(FQ) = L(Fl @] FQ)

This definition reflects the situation when there are no synergetic effects resulting
from the cooperation of two command systems (new stack language is just the
A-superposition of old ones).

Ezample 2. Let T = {k,}

Flz{a,b}
ng{b,c,d}
sig(a) =(—— k)
sig(b) =(k ——)
siglc)=(——1k)

sig(d) = (1 ——)

It is possible to check that ab € L(I7) and ¢bd € L(I3). These two words, on
the other hand, define L(I7 U I3).

Let us forget about given signatures and introduce the following variables:

x = sig(a)

y = sig(b)

z = sig(c)

w = sig(d)

The system of equations (in S)
zy=1

zyw =1

has the only solution:
r=(—-—y)
y=(y ——)
z=(—— w1 y1)
w=(w ——)

where we are free to choose y; and w;. In [10] some techniques of solving
such systems are presented.

Consequently, the language L(I7 U I3) is defined by equations sig(ab) = 1
and sig(cbd) = 1.

But L(I1) o L(I3) gives the same result and we have two non-intervening
command systems by definition.

This example demonstrates that two command systems can have both com-
mon and individual commands and still be non-intervening.

Proposition 2. If I1 C Is then I7 and I are non-intervening.

Proof. L(I1 U Iy) = L(Iy) C L(I1) U L(Iy). Now we use the theorem and
conclude that all three languages above have to be equal. O

4 Conclusion

There are different methods to define stack languages - stack effect calculus,
syntactic equations, grammars, Floyd-Hoare semantics, etc. All these definitions
have their benefits and drawbacks depending on the problems we want to solve.
But the language itself as a mathematical object remains the same whatever
method we choose.

A-superposition is an operation on languages. It is a natural way to combine
stack languages and this paper indicates possibilities and restrictions of using
this operation.

References

1. Ertl M.A., “Implementation of Stack-Based Languages on Register Machines,” Dis-
sertation, Vienna Technical University, 83 pp., 1996.

2. Gassanenko M.L., “Threaded Code Execution and Return Address Manipulations
from the Lambda Calculus Viewpoint,” FEuroForth’99, September 17 — 20, Sankt-
Petersburg, 17 pp., 1999.

3. MSDN Online Library: .NET Beta Documentation, .NET Framework Developer
Specifications, Technical Overview of the CLR, The Virtual Execution System. “Ver-
ification of Implementation Code,” http://msdn.microsoft.com/library/dotnet/
cpapndx/_cor_verification_of_implementation_code.htm, Microsoft, 2001.

4. Nivat M., Perrot J.F., “Une généralisation du monoide bicyclique,” C.R.Acad.Sci.
Paris, 271A, pp. 824 — 827, 1970.

5. Poial J., “Algebraic Specifications of Stack Effects for Forth Programs,” 1990
FORML Conference Proceedings, EuroFORML’90 Conference, Oct 12 — 14, 1990,
Ampfield, Nr Romsey, Hampshire, UK, Forth Interest Group, Inc., San Jose, USA,
pp- 282 — 290, 1991.

6. Poial J. “Multiple Stack-effects of Forth Programs,” 1991 FORML Conference
Proceedings, euroFORML’91 Conference, Oct 11 — 18, 1991, Marianske Lazne,
Czechoslovakia, Forth Interest Group, Inc., Oakland, USA, 1992, 400 — 406.

7. Pdial J. “Some Ideas on Formal Specification of Forth Programs,” 9th euroFORTH
conference on the FORTH programming language and FORTH processors, Oct 15 —
18, 1998, Marianske Lazne,Czech Republic, 1993, 4 pp.

8. Poial J., “Forth and Formal Language Theory,” FEuroForth’94, Nov 4 — 6, 1994,
Winchester, UK, pp. 47 — 52, 1994.

9. Pdéial J., “Validation of Stack Effects in Java Bytecode,” Proc. of the Fifth Sympo-
stum on Programming Languages and Software Tools, June 7 — 8, 1997, Jyvaskyld,
Finland, Report C-1997-37, Department of Computer Science, Univ. Helsinki, pp.
128 — 134, 1997.

10. Péial J. “Alternative Syntactic Methods for Defining Stack Based Languages,” Pro-
ceedings of NWPER’98 Nordic Workshop on Programming Environment Research,
Reports in Informatics No 152, University of Bergen, Norway, June 1998, 227 — 232.

11. Poial J., Soo V., Tombak M. “A Forth Oriented Compiler Compiler and its Ap-
plications,” 1990 FORML Conference Proceedings, FuroFORML’90 Conference, Oct
12 — 14, 1990, Ampfield, Nr Romsey, Hampshire, UK, Forth Interest Group, Inc.,
San Jose, USA, 1991, 257 — 261.

12. Stoddart B., Knaggs P., “Type Inference in Stack Based Languages,” Formal As-
pects of Computing, BCS, 5, pp. 289 — 298, 1993.

