
Java Framework for Static
Analysis of Forth Programs

Jaanus Pöial

The Estonian Information Technology College

supported by Estonian Science Foundation grant no. 6713

Stack effects

Informal description

OPERATION STACK EFFECT DESCRIPTION

+e.g. (a b -- a+b) add two topmost
elements

before after
a+ba

btop

Stack effect calculus – 1990-s

TT - operand types (char, flag, addr, ...)

TT* - type lists (last type on the top)
Ø - type clash symbol (stack error)
The set of stack effects:

SS = (TT* x TT*) U { Ø }
(a → b)

input parameters (types) output parameters (types)

Composition (multiplication)

For all s in SS: s·Ø = Ø·s = Ø
For all a, b, c, d, e, f in TT*:

(a → b) · (eb → d) = (ea → d)
(a → fc) · (c → d) = (a → fd)
Ø, otherwise

Ø is zero
1 = (→) is unity for this operation
SS is polycyclic monoid

Notation for rule based approach
t, u, … - types (just symbols)

t ≤ u – t is subtype of u (t is more exact) or
equal to u (subtype relation is transitive)

t ┴ u - t and u are incompatible types

ti - type symbols with “wildcard” index
(index is unique for “the same type”)

Notation (cont.)

a, b, c, d, … - type lists (top right) that
represent the stack state

s = (a → b) – stack effect
(a – stack state before the operation,
b – after)

Ø - type clash (zero effect)

Notation (cont.)

(a → b)·(c → d) - composition of stack effects
(a → b) and (c → d) defined by rules

x, y – sequences of stack effects

y, where uj := tk – substitution: all occurances
of uj in all type lists of sequence y are
replaced by tk, where k is unique index over y

Rules

∅
⋅∅ x

∅
∅⋅x

() ()
()dcax

dcax
→⋅
→⋅→⋅() ()

()bdax
dbax

→⋅
→⋅→⋅

() ()
∅

⊥→⋅→⋅ utdcubtax where,

Rules (cont.)

() ()
() () kjki

ji

tuandttdcbax
utdcubtax

==→⋅→⋅
≤→⋅→⋅

::where,
where,

() ()
() () kjki

ji

uuandutdcbax
tudcubtax

==→⋅→⋅
≤→⋅→⋅

::where,
where,

Greatest lower bound

Loop invariant

Handling branches and loops

Greatest lower bound operation and
loop invariants in use:

Example (small subset)

Type system:

a-addr < c-addr < addr < x
flag < x
char < n < x

Example (cont.)

Words and specifications:

DUP (x[1] -- x[1] x[1])
DROP (x --)
SWAP (x[2] x[1] -- x[1] x[2])
ROT (x[3] x[2] x[1] -- x[2] x[1] x[3])
OVER (x[2] x[1] -- x[2] x[1] x[2])
PLUS (x[1] x[1] -- x[1]) “same type”
+ (x x -- x)
@ (a-addr -- x)
! (x a-addr --)
C@ (c-addr -- char)
C! (char c-addr --)
DP (-- a-addr)
0= (n -- flag)

Examples with control structures

: test1
IF

ROT
ELSE

@
THEN ;

(a-addr[1] a-addr[1] a-addr[1] --
a-addr[1] a-addr[1] a-addr[1])

Examples (cont.)

: test2
BEGIN

SWAP OVER
WHILE

NOT
REPEAT ;

(flag[1] flag[1] -- flag[1] flag[1])
: test3

OR FALSE SWAP ;

Package evaluator

Written in Java
Supports stack effect calculus:

Evaluation of sequences of stack
operations
Greatest lower bound operation
(evaluation of alternative branches)
Finding loop invariants (idempotents)

Extensible (currently 8 basic classes)

Class TypeSymbol
Objects consist of two fields:

Type name – symbolic name of a stack
item, like:

a-addr < c-addr < addr < x

The typesystem uses type names as keys
to access information about types

Position index – used for stack manipulation
words (like SWAP ROT OVER …) to indicate
that items have the same type (sometimes
the item itself remains the same):

SWAP (x[2] x[1] -- x[1] x[2])

If positions are not important the index
is zero

Matching
When two typesymbols match (describe the same

data item on the stack) a new symbol is created
that has minimal (most exact) type and new “fresh”
position index (only if position index is not zero).
Both matching symbols are replaced by this new
symbol:

SWAP DUP @
(x[2] x[1] -- x[1] x[2]) (x[1] -- x[1] x[1]) (a-addr -- x)
(x[3] x[1] -- x[1] x[3]) (x[3] -- x[3] x[3]) (a-addr -- x)
(a-addr[4] x[1] -- x[1] a-addr[4])

(a-addr[4] – a-addr[4] a-addr[4]) (a-addr[4] -- x)
(a-addr[2] x[1] -- x[1] a-addr[2])

(a-addr[2] – a-addr[2] a-addr[2]) (a-addr[2] -- x)
Result is: (a-addr[2] x[1] -- x[1] a-addr[2] x)

Class TypeSystem

Keeps information about subtyping.
Type name is used as a key to access

the matrix of relations between types:
“incompatible”, “subtype”,
“supertype”, “synonym”

Parameter of evaluation (we can
evaluate the same program against
different typesystems)

Class Tvector

Vector (list) of typesymbols

Describes the stack state (top right)

Class Spec

Describes the stack effect (specification)
Vector left_side – stack state before execution
Vector right_side – stack state after execution
Workfields, like string for scanner words: .” (

Contains glb and idemp operations:
sp_glb = sp1.glb (sp2, typesys, specset)
sp_loop = sp_body.idemp (typesys, specset)

Class SpecSet

Set of stack effects in use to evaluate
a program

Dynamic mapping from Forth words
to corresponding stack effects

Parameter of evaluation (we can
evaluate the same program against
different specsets, e.g. run-time vs.
compile-time).

Class SpecList

Linear sequence of stack effects

Contains the evaluate operation for
sequences:
spec = speclist.evaluate (typesys, specset)

Composition of stack effects is a particular
case of evaluation

Class ProgText

Represents the Forth program
(currently implemented only for
linear sequences of words)

If Forth text is pre-processed to
discover syntactic structures
(it is better to avoid this approach
– in principle there are no
syntactic structures in Forth)
the result is stored as ProgText

Class Evaluator

Contains the main method

Includes a small demo to add
annotations (formal stack comments)
to the linear sequence of words

Used for testing

Further work
Re-write in Forth

Re-write for IDE (like Eclipse plugin:
http://www.eclipse.org)

Handle extensibility (everything can
change: control structures, defining
words, new scanner words, …)

http://www.eclipse.org/

Pseudo-Forth
=DEF= PROG
PROG = ELEM / PROG ELEM .
ELEM = SIMPLE / DEFINITION .
SIMPLE = WORD / PARSER / CONSTANT .
WORD = <word> .
PARSER = PARSER<delim> / COMMENT .
PARSER<delim> = WORD <string><delim> .
COMMENT = <comment> .
CONSTANT = <constant> .
DEFINITION = VARDEF / CONSTDEF / COLONDEF .
VARDEF = 'VARIABLE' NAME / 'CREATE' NAME .
CONSTDEF = SIMPLIST 'CONSTANT' NAME .
COLONDEF = ':' NAME CONTENT ';' /

':' NAME CONTENT 'CREATE' CONTENT 'DOES>' CONTENT ';' .
NAME = <word> .
CONTENT = CELEM / CONTENT CELEM / . # CONTENT might be empty
CELEM = SIMPLE / STRUCTURE .
STRUCTURE = 'IF' CONTENT 'THEN' /

'IF' CONTENT 'ELSE' CONTENT 'THEN' /
'BEGIN' CONTENT 'WHILE' CONTENT 'REPEAT' / # other structures similar
'[' SIMPLIST ']' .

SIMPLIST = SIMPLE / SIMPLIST SIMPLE .
=END=

	Java Framework for Static Analysis of Forth Programs
	Stack effects
	Stack effect calculus – 1990-s
	Composition (multiplication)
	Notation for rule based approach
	Notation (cont.)
	Notation (cont.)
	Rules
	Rules (cont.)
	Greatest lower bound
	Loop invariant
	Handling branches and loops
	Example (small subset)
	Example (cont.)
	Examples with control structures
	Examples (cont.)
	Package evaluator
	Class TypeSymbol
	Matching
	Class TypeSystem
	Class Tvector
	Class Spec
	Class SpecSet
	Class SpecList
	Class ProgText
	Class Evaluator
	Further work
	Pseudo-Forth

