Java Framework for Static Analysis
of Forth Programs

Jaanus Poial

The Estonian Information Technology College
e-mail: jaanus.poial@itcollege.ee

Abstract. In [2] author introduces theoretical background for static
analysis of Forth programs (definitions, basic operations, typing rules,
etc.). This paper is direct continuation of the topic and describes im-
plementation of basic blocks for writing software tools to support type
checking of Forth programs. On small examples we try to explain prob-
lems and possible solutions. Author hopes that these ideas help to de-
velop some useful tools. Prototype is written in Java that is quite univer-
sal and widespread object oriented platform for software development.

Keywords: Type Systems, Forth, Program Analysis

1 Introduction

In [1] we first defined formal stack effects of Forth words. This definition and
theory of stack effect calculus have been developed for a long time and in [2]
we introduced several operations on effects to perform static type analysis of
Forth texts. Basic program constructs covered so far are sequence, choice and
iteration. For each of these we have corresponding operation in our calculus.

Let us start with a few informal examples. Data item on Forth stack generally
does not have any run-time type but the programmer usually has some static
type information in mind when composing a program. This information may be
more or less exact, e.g.
a-addr < c-addr < addr < u < x (x is the least exact)
and for example word @ is specified as (a-addr -- x).

At the same time many operations manipulate stack (e.g. SWAP, DUP, ROT,
etc.) without changing types of data items. To cover this aspect we introduced
position indices to type symbols:
word SWAP has effect (x[2] x[1] -- x[1] x[2]) rather than (x x -- x x).
Program DUP @ has stack effects (x[1] -- x[1] x[1]) (a-addr -- x) and
should evaluate into (a-addr[1] -- a-addr[1] x) rather than (x -- x x).

Sequences can be longer than two words, e.g. SWAP DUP @ gives:

(x[2] x[1] -- x[1] x[2]) (x[1] -- x[1] x[1]) (a-addr -- x).
When two type symbols with locally defined indices must match in the process of
evaluating a sequence they produce a new type symbol that has minimal (most

* Supported by Estonian Science Foundation grant no. 6713

exact) type and new ”fresh” index. This new symbol replaces both matching
symbols in the sequence:

(x[2] x[1] -- x[1] x[2]) (x[1] -- x[1] x[1]) (a-addr -- x)

(x[3] x[1] -- x[1] x[31) (x[3] -- x[3] x[3]) (a-addr -- x)

(a-addr[4] x[1] -- x[1] a-addr[4]) (a-addr[4] -- a-addr[4] a-addr[4])
(a-addr([4] -- x)

Let us rename (to delete unused) indices where possible:

(a-addr[2] x[1] -- x[1] a-addr[2]) (a-addr[2] -- a-addr[2] a-addr[2])
(a-addr[2] -- x)

and the final evaluation result for sequence SWAP DUP @ is

(a-addr[2] x[1] -- x[1] a-addr[2] x).

On this small example we see that evaluation has to preserve information
both on types and positions of data items. When type symbols do not match
we have to produce some useful error information. This is one of the reasons
to have evaluation of sequence as a basic block in our framework rather than
composition of two effects.

Choice between two branches of a program in our framework forces these
branches to have ”the same” effect. Operation glb (greatest lower bound) of two
effects tries to match all corresponding symbols and replace these with new most
exact "fresh” symbols (like for composition above).

Program IF ! ELSE C! THEN has two branches and we calculate
glb((x a-addr --), (char c-addr --))as (char a-addr --).

Program IF OVER ELSE @ DP @ THEN produces
glb((x[2] x[1] -- x[2] x[1] x[2]),(a-addr -- x x)) that evaluates into
(x[2] a-addr[1] -- x[2] a-addr[1] x[2]).

From these examples we conclude that glb calculates longest type lists with
most exact types.

Iteration in this framework forces the loop body not to change the stack state
(loop body has ”idempotent” effect: e = ee).
Effects with equal type lists on both sides are idempotents: (list —- list).
To calculate the effect of a loop we find the most precise idempotent by matching
left and right sides of the effect that describes the loop body (it is possible only
if both sides have the same length).

Program BEGIN @ AGAIN iterates the word @ endlessly. The loop body has
effect (a-addr -- x) and loop (as a whole) has effect
(a-addr[1] -- a-addr[1]).
More complicated loop BEGIN SWAP OVER WHILE NOT REPEAT falls into two pieces:
(x[2] x[1] -- x[1] x[2]) (x[2] x[1] -- x[2] x[1] x[2]) (flag --) and
(x -- %).
First loop body has effect (x[2] flagl[1] -- flagl[1] x[2]) and the loop has
effect (flagl[1] flag[1] -- flag[1] flag[1]). Composed by the second loop
effect (x -- x) we still have (flag[1] flag[1] -- flag[1] flag[1]) but we
also know that NOT operates on flag[1].

If the loop body has effect e we can calculate loop effect as glb(e, ee).

These examples are not complex enough to cover real programs but hopefully
give some ideas how to evaluate sequences, choices and iterations.

2 Java framework

Package evaluator consists of several classes and probably will grow depend-
ing on tools we intend to develop. Let us summarize the basic blocks in this
framework.

Class TypeSymbol defines symbolic type of a stack item (like a-addr, flag,
char, ...) together with position index (used by stack manipulation words like
SWAP, OVER, ROT, ...). Type names must be known by current typesystem.
Usually there are more names than actual types (synonyms are allowed for con-
venience). Position indices are integers (when ”fresh” symbol is created during
the match operation this index increases, index 0 is used if position is not im-
portant).

Class TypeSystem is used to define and query subtyping relations between
types. Type name is used as a key to access matrix of relations. Relations
are "incompatible", "subtype", "supertype", "synonym". Typesystem is
static, once created it does not change much during evaluation process. But we
keep possibility to use different typesystems to analyze the same program open
(e.g. to see more or less details).

Class Tvector describes the stack state (top right) and each vector consists
of typesymbols. Substitution of one symbol by another is defined in this class.

Class Spec describes the stack effect (specification). It consists of two vectors
(left side - stack state before execution, right side - stack state after execution)
and additional workfields (e.g. string read by scanner words like . " or (). Major
operations of the framework (like greatest lower bound or finding idempotent for
the loop body) are defined in this class:
specl.glb(spec2, typesystem, specset) returns spec
bodyspec.idemp (typesystem, specset) returns loopspec

Class SpecSet describes a mapping from Forth words to stack effects. This
mapping is dynamic - all new words defined in the program must be added.
Once again, we may use different specsets for the same program text to analyze
different aspects (e.g. run-time stack vs. compile-time stack).

Class SpecList describes a linear sequence of stack effects and implements
evaluation of this list against given typesystem and given specset:
speclist.evaluate(typesystem, specset) returns spec
Composition of stack effects is a particular case of evaluation.

Class ProgText is inner representation of the Forth program we want to
analyze. Currently only linear sequence of words is implemented.

Class Evaluator contains the main method and a small demo that adds
annotations (comments about stack state) to the linear program text.

3 Further work

All classes described above are prototypes and need to be implemented fully to
develop any useful tools. Extensible nature of Forth demands that our framework
is also extensible (for example, we cannot just fix control structures or data
definition words). It seems to be easier to re-write this package in Forth to
achieve full extensibility.

Stack effect calculus might help programmers when integrated into Forth
IDE (e.g. editor that shows current stack state symbolically, evaluates selected
text, etc.). To create such an editor we need these (or similar) basic blocks plus
a lot of other components. Maybe it is reasonable to use some existing IDE plat-
form (like Eclipse - www.eclipse.org) and develop a Forth plugin for Eclipse.
Then probably we lose in extensibility but we can still work with some subset
of Forth. The following is a very small but useful subset that we would like to
cover next:

PROG = ELEM / PROG ELEM .

ELEM = SIMPLE / DEFINITION .

SIMPLE = WORD / PARSER / CONSTANT .

WORD = <word> .

PARSER = PARSER<delim> / COMMENT .
PARSER<delim> = WORD <string><delim> .
COMMENT = <comment> .

CONSTANT = <constant> .

DEFINITION = VARDEF / CONSTDEF / COLONDEF .
VARDEF = ’VARIABLE’ NAME / ’CREATE’ NAME .
CONSTDEF = SIMPLIST ’CONSTANT’ NAME .
COLONDEF = ’:’ NAME CONTENT ’;’ /

>:? NAME CONTENT °’CREATE’ CONTENT °’DOES>’ CONTENT °’;°’
NAME = <word> .

CONTENT = CELEM / CONTENT CELEM / .

CELEM = SIMPLE / STRUCTURE .

STRUCTURE = ’IF’ CONTENT °THEN’ /

>IF’ CONTENT ’ELSE’ CONTENT ’THEN’ /
’BEGIN’ CONTENT ’WHILE’ CONTENT ’REPEAT’ /
>[> SIMPLIST ’]’

SIMPLIST = SIMPLE / SIMPLIST SIMPLE .

References

1. Poial J., “Algebraic Specifications of Stack Effects for Forth Programs,” 1990
FORML Conference Proceedings, EuroFORML’90 Conference, Oct 12 — 14, 1990,
Ampfield, Nr Romsey, Hampshire, UK, Forth Interest Group, Inc., San Jose, USA,
p- 282 — 290, 1991.

2. Poial J. “T'yping Tools for Typeless Stack Languages,” Proc. 22-th EuroForth Con-
ference, September 15 — 17, 2006, Cambridge p. 40 — 46, 2006.

