MULTIPLE STACK-EFFECTS OF FORTH-PROGRAMS

Jaanus Poial

Tartu University, Department of Computer Science

Tartu Estonia

The moast important quality of the Forth-word is its
stack-effect. There are some good tools to trace the
program, but in the complicated environment it is an
inconvenient task to trace all branches of the program. The
main idea of this work is to introduce a formalism which
allows to check the stack-effects according to the program
text. In [P90] an attempt was made to handle linear programs
with the unique stack-effect. Recent work tries to
investigate multiple stack-effects and programs with the
control structures. Our attention is concentrated only to
the aspect of parameter passing through the stack excluding
memory handling, I/0, e.t.c.

Each Forth-word has an informal specification of its
stack-effect given in the form:

input parameter types -— output parameter types

The type lists given above are ordered, the end of
the 1list corresponds to the top of the stack. This
specification does not say anything about the essence of the
operation.

Our further investigation is based on the theory of

semigroups. In [NP701 M. Nivat and J.F. Perrot

J. Poilal Multiple Stack-effects of Forth-programs Page 2

introduced a O-bisimple inverse semigroup called polycyclic

monoid. We need some notations to express the main ideas:

A - an alphabet (finite set of type names),

A" - the set of strings over A (set of type lists),

A - the empty string (A € A" for arbitrary A),

ab - the concatenation of strings o and b,

0O - the null element, specifies the type conflict in sense

of parameter passing.

The set of stack-effects over A is the union:
BEA) = CA" %A)t 0,
Let [s --- s 1 denote a pair (s, s) & A" x a”.
i 2 1 2
Here s, is the list of input parameters and s, is the
list of output parameters as above. If there is no need to
emphasize the alphabet we use & instead of &cA).
The pair (A, A) = [---] is denoted by 1.

We may define the product of stack-ejffects as follows:

1) Vse&: =80 =05 =0,

2) Vs, ted@ \ (0): st=[8 ---85 1 [t --——1¢t 1 =
i 2 4 2
L asi - tz : (e if t1 = asz »
= C 51 — bt2 3 5 if 52 = bt‘ »

0 , otherwise.
The set & is (isomorphic to) a polycyclic monoid
(proof in ([NP70]). Consequently:
1) Vs, ted& : st eéd,
2) Vr, 5, t € & : (rs)t = r(st),
B Ysed& : =1 =1s = s,

4) V== & 1 s0

n
5
1]
-

doPbial Multiple Stack-effects of Forth—prograoms Page 3

It is important to mention that @ is an inverse
semigroup, i.e. for each element = there exists an unique
element ¢t so that sts = 32 and tst = t. This property is
used in case of Forth-programs are generated by the syntax
directed translation scheme (see [P3901).

Each Forth-word may (on principle) have more than one
stack-effect. Let us have a look at set of all subsets of &,
which we denote by 2§. We define the product on the set 2i

via previous definition for & in the following way:

Yy, & e 2i: 6= luved |juey)&ved)\ t0),

An empty set @ is the null element of Zﬁ and the set (1 }

is the unit of 2i .

Addition on the set 2i is defined as the set union.

Unfortunately, 2‘i is not inverse semigroup (it is easy
to give a contra-example). It seems to be useful to find a
subset M < 2‘i which is sufficiently good for practical use
and which ies inverse semigroup. Let p be a predicate on the
set 2§ so that M = (y» = Zﬁ | p¢¥> }. The predicate p has
to hold the following conditions (¥, &, %, e, £ € M):
1) p(y) & p(&) => p(ypéS) (subsemigroup condition),
2) p(y) => A x : p(x) & (yxy = ¥y) (regularity condition),
3) p(e) & p(f) & ee=e & f£ff=f => ef=fe (commutativity
condition for idempotents).

A trivial example of predicate p which gives M 2 & is
p(») = || £ 1, i.e. y contains one element of & or ¥ |is

the empty set.

dogiPESLal Multiple Stack-effects of Forth-programs Page 4

Let A denote a set of considered stack operations.
Set of Forth-programs is A' (program is a list of
operations here).

Program specification is defined as a saset of stack-
effects by the mapping s : A* [26:

1) M kol RN Mttt Lo sdss. s inbns ekt icetion
of stack operation n {non-empty set of non-zero
stack-effects),

23 atlA) 5t o1 4] (specification for the empty program),

3) Voe A*, VIIe A sCll) = s(w)s({) (product in 26).

The program w & A* is said to be correct, if s(w) = P,
and closed, if s(w) = { 1).

A set of correct programe is defined as

CORRECT(A, 8) = { w € A" | 8(w) » 9)
and a set of closed programs as
CLOSED(A, &) = { w e A" | s¢w) = (1) }.
Obviously
{ A} c CLOSED ¢ CORRECT ¢ A™.

These sets are algorithmically solvable, because we can
calculate stack-effects of the program proceeding from the
stack-effects of given operations (up to now this is true
for the linear programs).

We must add a restriction to our correctneass definition
in case of control structures are used - s8(w) has to be a
finite non-empty set.

To handle the control structures we introduce the

notion of closure of a subset of stack-effects. Let § e 25.

J.. Boial Multiple Stack-effects of Forth—programs Page 5

¥ = (1
i
¥ e
ntd _ n &
8 » ¥ <Cproduct: in 2)
+ - i -
ye = u rL (transitive closure)
i=1
= o
¥y = U yt (reflexive transitive closure)

L=0

The mapping 8 for the control structures is given by

the formulas:

@ = BEGIN « WHILE /3 REPEAT , where «, 3 & A"

s(w = [s ([true --- 1} a¢(® 1" s(w) ([false --- 1}
@ = BEGIN « . UNTIL , where o & A"
s(w) = [sl LLfalienms 33 111 Bl bl raeie =133

w = IF « THEN , where « e A*

s(w) {[false --- 1} + {([true --- 1) s(

@ = IF o ELSE {3 THEN , where o, 3 € A"

s(w) ({[true --- 1)} s(x) + ((false --- 1} s(M

@ =D0 «LOOP , where a e A®™ and h > 1

(th 1 --- 1) [8¢a)1™' for known h and 1,

s(w)

L}

s(w) ([#*» » --- 1) [8(a1" for dynamical case.

Symbols true and false might be renamed proceeding from
the actual type saystem (it is the implementation level
problem). Constants h and 1 are usually unknown in sense of
type system - it leads us to introduce free ("wildcard")

types # and ##,

J.r Paiol Multiple Stack-ejffects of Forth-programs Page 6

Example. Let us have a Forth-program
BEGIN SWAP OVER WHILE NOT REPEAT
We use the following alphabet and specifications:

A= 1 T FE 3

[FF ---F F 1

S(SWAP) = [#% » ——- % %»] = E i ; - g $:

BT T < PP
[FF ---FFF)]
. o _ }JtLET -~~~ FTF
8(OVER) = [=x» =« % % wn] = ETF ==~ TF T 3
(T R BT 3

_fLF =--1T1
s (NOT) = { ot N }

w = BEGIN SWAP OVER WHILE NOT REPEAT
To apply the formula for the WHILE-cycle it is useful

to pre-calculate some products :

(FF ---FFF]
E _JILFT---TF T
8(SWAP OVER) = s(SWAP) s(OVER) = { ' . o 77 o . o]
8k % BT BT O
_fLFT=---TF]
s8(SWAP OVER) ([T --- 1) = { LT T =eme T T3 }
_fLFT---TT]
s8(SWAP OVER) ([T --- 1) s(NOT) = { b . b e 4 }_
_fLFF ---FF]
8(SWAP OVER) (L F --- 1) = { (T F === F T3 }.

Now we may calculate the program specification s(w):

a(w) = [a(SWAP OVER) ([T ---])‘s(NOT)]* s (SWAP OVER) -

L 3
_EET =TT I Y TE Braes BBl Yao
L0 2.2 { LTT --—-TF 1 } { [T F -==F T1 } o

J. Psial Multiple Stack-effects of Forth-programs FPage 7

. ¢ 1+ § VBT ERCERIINTS OF @ Qe 2R0GERS)
(TT---TF] {TF ---FT]

| I o B o B o |
e I I I
e -
i
1
I
- -
oo
b e
Y e
™ ™
-
mom
T
£ 1
-1
" m
e |
d

d

M mmMmmMm
- -
- e

]

I

1
wom oo
-
e d b

; 4

Immediate check gives just the same result.

It may happen that some closure has infinite number of
elements. In that case the program is not correct in sense
of our definitions. At the same time an algorithm to detect

this kind of incorrectness has to finish its work.

References

[NP701 Nivat M., Perrot J.F. Une généralisation du monotde
bicyclique. - €. R. Acad. Sci. Paris, 271A, 1970,
p.824-827.

[P90] PSial J. Algebraic specifications of stack-effects
for Forth-programs. - EuroFORML®'90, Oct.12-14, 1990,

Proceedings. Ampfield, U.K., 1990, 8 PP-

