Typing Tools for Typeless Stack Languages

Jaanus Pöial

The Estonian Information Technology College

supported by Estonian Science Foundation grant no. 6713

Typeless stack language

- The same stack is used to pass parameters of different types
- No type information is available at runtime – just "cells"
- Type information is hardly ever used even at compile time – it is only in programmers mind

Typing

- Typing is not part of the language but part of code conventions and discipline – e.g. stack effect descriptions in Forth
- It is possible to introduce separate type checking tools (program analysis tools) on text level by extracting formal typing information from informal stack comments

Informal description

OPERATION

+

e.g.

STACK EFFECT

DESCRIPTION

add two topmost elements

Stack effect calculus – 1990-s

T - operand types (char, flag, addr, ...) **T**^{*} - type lists (last type on the top) Ø - type clash symbol (stack error) The set of stack effects: **S** = (**T**^{*} × **T**^{*}) U { Ø } (a → b)

input parameters (types) output parameters (types)

Composition (multiplication)

For all s in **S**: $s \cdot \emptyset = \emptyset \cdot s = \emptyset$ For all a, b, c, d, e, f in **T**^{*}: $(a \rightarrow b) \cdot (eb \rightarrow d) = (ea \rightarrow d)$ $(a \rightarrow fc) \cdot (c \rightarrow d) = (a \rightarrow fd)$ Ø, otherwise Ø is zero

1 = (\rightarrow) is unity for this operation **S** is polycyclic monoid

Notation for rule based approach

- t, u, ... types (just symbols)
- t ≤ u t is subtype of u (t is more exact) or equal to u (subtype relation is transitive)
- $t \perp u$ t and u are incompatible types
- tⁱ type symbols with "wildcard" index
 (index is unique for "the same type")

Notation (cont.)

a, b, c, d, ... - type lists (top right) that represent the stack state

 $s = (a \rightarrow b)$ – stack effect (a – stack state before the operation, b – after)

Ø - type clash (zero effect)

Notation (cont.)

 $(a \rightarrow b) \cdot (c \rightarrow d)$ - composition of stack effects ($a \rightarrow b$) and ($c \rightarrow d$) defined by rules

- x, y sequences of stack effects
- y, where u^j := t^k substitution: all occurances of u^j in all type lists of sequence y are replased by t^k, where k is unique index over y

Rules

 $\frac{x \cdot (a \rightarrow bt) \cdot (cu \rightarrow d), \text{ where } t \perp u}{\varnothing}$

Rules (cont.)

$$\frac{x \cdot (a \rightarrow bt^{i}) \cdot (cu^{j} \rightarrow d), \text{ where } t \leq u}{x \cdot (a \rightarrow b) \cdot (c \rightarrow d), \text{ where } t^{i} := t^{k} \text{ and } u^{j} := t^{k}}$$

$$\frac{x \cdot (a \rightarrow bt^{i}) \cdot (cu^{j} \rightarrow d), \text{ where } u \leq t}{x \cdot (a \rightarrow b) \cdot (c \rightarrow d), \text{ where } t^{i} := u^{k} \text{ and } u^{j} := u^{k}}$$

"Must" vs. "may"-analysis

- "What is the possible stack state in a given program point? What might happen?" Impracticable question (hard to calculate, huge state space, unclear result), discussed in authors 1991 EuroForth paper
- "What guarantees that the stack state in a given program point is ... ? What must happen?" Allows to find errors, easy to calculate using *glb*.
 - Example: two *if*-branches have different stack effects

Greatest lower bound

$s \sqcap 0$	$r \sqcap s$
0	$s \sqcap r$

If there exist type lists $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$ such that for all elements of the lists these subtyping relations hold elementwise

$$a_3 = min(a_1, a_2)$$

 $b_3 = min(b_1, b_2)$
 $c_3 = min(c_1, c_2)$

then the following rule is applicable, in all other cases the result is zero.

$$\frac{(c_1a_1 \rightarrow c_2b_1) \sqcap (a_2 \rightarrow b_2)}{(c_3a_3 \rightarrow c_3b_3)}$$

Loop invariant

$$\sqcap^* s = s \sqcap (s \cdot s)$$

The result of this operation is an idempotent element that most precisely describes the loop body s.

Handling branches and loops

"May"-style (no implementation)

$$\frac{s(\text{ IF } \alpha \text{ ELSE } \beta \text{ THEN })}{[(\texttt{true} \rightarrow) \cdot s(\alpha)] \sqcup [(\texttt{false} \rightarrow) \cdot s(\beta)]}$$

 $\frac{s(\text{ BEGIN } \alpha \text{ WHILE } \beta \text{ REPEAT })}{\sqcup^*[s(\alpha) \cdot (\texttt{true} \rightarrow) \cdot s(\beta)] \cdot s(\alpha) \cdot (\texttt{false} \rightarrow)}$

Handling branches and loops

"Must"-style (abstraction)

$$\frac{s(\text{ IF } \alpha \text{ ELSE } \beta \text{ THEN })}{(\texttt{flag} \rightarrow) \cdot [s(\alpha) \sqcap s(\beta)]}$$

 $\frac{s(\text{ BEGIN } \alpha \text{ WHILE } \beta \text{ REPEAT })}{\sqcap^*[s(\alpha) \cdot (\texttt{flag} \rightarrow)] \cdot \sqcap^* s(\beta)}$

Example (small subset)

o Type system:

a-addr < c-addr < addr < x flag < x char < n < x

Example (cont.)

• Words and specifications:

```
DUP (x[1] - x[1] x[1])
DROP (x -- )
SWAP (x[2] x[1] -- x[1] x[2])
ROT (x[3] x[2] x[1] - x[2] x[1] x[3])
OVER (x[2]x[1] - x[2]x[1]x[2])
PLUS (x[1] x[1] -- x[1]) "same type"
+ (x x - x)
@ (a-addr -- x)
! (x a-addr --)
C@ (c-addr -- char)
C! (char c-addr --)
DP (-- a-addr)
0 = (n - flag)
```

Example (cont.)

```
Simple program:

SWAP SWAP

Conflict:

C@ !

More exact analysis:

0= + 0=

0= PLUS 0=
```

Information moving backwards: OVER OVER + ROT ROT + C! OVER OVER PLUS ROT ROT PLUS C! OVER OVER PLUS ROT ROT PLUS OVER OVER + ROT ROT PLUS C! OVER OVER PLUS ROT ROT + C!

Examples with control structures

: test1 IF ROT ELSE @ THEN ;

(a-addr[1] a-addr[1] a-addr[1] --a-addr[1] a-addr[1] a-addr[1])

Examples (cont.)

: test2 BEGIN SWAP OVER WHILE NOT REPEAT ;

: test3

OR FALSE SWAP ;

Results

- Theoretical framework for stack analysis
- Implemented (in Java):
 - composition (for linear code)
 - greatest lower bound operation (for branching)
 - nearest idempotent (for loop invariants)