1990 FORML CONFERENCE PROCEEDINGS

FORTH MODIFICATION LABORATORY

Twelfth Asilomar FORML Conference
November 23-25, 1990
Asilomar Conference Center
Pacific Grove, California

EuroFORML '90 Conference
October 12-14, 1990
Potters Heron Hotel
Ampfield, Nr Romsey

Hampshire, U.K.

Copyright 1991 by the Forth Interest Group, Inc.

Individual papers in this volume may be copyrighted by the
author(s) or company responsible for the work. The publisher
makes no claims for the correctness of the material presented,
or for the author's right to publish said material.

A Publication of
The Forth Interest Group
P. O. Box 8231, San Jose, CA 95155

Published in the United States of America

Cover design by Steven Reiling

SESSION 3

ALGEBRAIC SPECIFICATION OF
STACK-EFFECTS FOR FORTH
PROGRAMS

Jaanus Poial

Tartu University, Estonia

The main idea of this work is to introduce a formalism which allows to check the
stack-effects according to the program text. The same formalism will be used in
case of Forth-programs being generated by some formal mechanism (we shall deal
with the syntax-directed translation scheme). Our attention is concentrated only to

the aspect of parameter passing through the stack excluding memory handling, /O,
etc.

1990 FORML Conference Proceedings

ALGEBRAIC SPECIFICATICNS OF STACK-EFFECTS
FOR FORTH-PROGRAMS

Assoc. Prof. Jaanus Poial
Tartu University, Estonia

The most important quality of the Forth-word is its
stack-effect. Particularly strong discipline is required
when a large application (hundreds of screens) is written or
more than two programmers participate in the Project. There
are some good tools to trace the program, but in the
complicated environment it is an inconvenient task to trace
all branches of the program. The main idea of this work is
to introduce a formalism which allows to check the
stack-effects according to the program text. The same
formalism will be used in case of Forth-programs being
generated by some formal mechanism (we shall deal with the
syntax-directed translation scheme). Our attention is
concentrated only to the aspect of parameter passing through

the stack excluding memory handling, I/0, etc.

Each Forth-word has an informal specification of its
stack-effect given in the form:

input parameter types --- output parameter types

The type lists given above are ordered, the end of
the 1list corresponds to the top of the stack. This
specification does not say anything about the essence of the
operation.

Our further investigation is based on the theory of

semigroups. In [NP70] M. Nivat and J.F. Perrot

1990 FORML. Conference Proceedings 283

introduced a O-bisimple inverse semigroup called polycyclic
monoid. We need some notations to express the main ideas:
an alphabet (finite set of type names),

the set of strings over A (set of type lists),

*
the empty string (A € A for arbitrary A),

the concatenation of strings a and b,
the null specification (specifies the error-situation).
The set of specifications over A is the union:

SA) = L A" 2 A J oL ® b

*

] *
[8, = 5] denote a pair (s, 52) € A XA,

Here s, is the list of input parameters and s, is the
list of output parameters as above. If there is no need to
emphasize the alphabet we use @ instead of ®(A).

The pair (A, A) = [---] is called the empty specifi-
cation and denoted 1.

We may define the product of specifications as follows:
1} ¥ s8'€ & = 08 =2 0 ,
2) Vg, ted\ {0} st=[s

[as, --- ¢,) [

[s, --- bt, 1,

1
0, otherwise.

The set @® is isomorphic to polycyclic monoid
(proof in [NP70]). Consequently:
Y g, . #oEiP :edBE €cf,;
2) Vi, ag;eitr € iy Jdes)t=iztest),
3] Ysep i 1 l1s = s,

4) Y g€d o080 0s 0.

1990 FORML Conference Proceedings

Let A be a set of considered operations. a* is a set of
sequences from these operations (set of programs).

Specifications are given by the mapping s : A% s P <
1)vilea: sMed\ {0 } 1is a given specification of

the operation I,
2) s(A) =1 (the empty program),
3) Vuea*, VI €a: s(ul) = s(w)s(),

The program w € ﬂ* is said to be correct, if s{w) # 0,
and closed, if s(w) = 1,

We may define a set of correct programs as

CORRECT(A, s) = { w € &% | s(w) # 0 }
and a set of closed programs as
CLOSED(4, s) = { w e &* | s(w) = 1).
Obviously
(A} © CLOSED ¢ CORRECT c A*.

These sets are algorithmically solvable because we may
calculate the formal specification of a program according to
the specifications of existing words. The control structures
of Forth need special treatment when writing practical
correctness-checker (an attempt is made to include the

correctness checking into the editor immediately).

-1 ; :
Let s € . The inverse element s € ® 1is defined by
the conditions:
1) if s =0, then s = 0,

2) if s=[s ---s,], then s ' =[s, ---s_].

1990 FORML Conference Proceedings

285

| The partial order relation = is convenient in the

theory of semigroups ([CP67]): s s t, iff st ' = ss .

| Since 0t ' = 00 = 0, we have 0 < t for all ¢t € ¢,

| Theorem 1. The following assertions are equivalent:

|) T sps-sany peipe i f
I
| 2)3aea®: (s ---s, 1= at, --- at, 1,
3) [--- s, R 7 t, e Aty 1 =1,
I e oy & ol
li " £ 40y Sk s, 1
" 81 L &, === &, | Fla) sl §ai[hg)=kt
1 Having a partial order relation, the problem of
! comparable elements arises. At present we know that the
N
i

null element is comparable with all elements of &,

Theorem 2. The following comparability conditions are
equivalent for the elements of &:

1) s#0, t#0 and s is comparable with ¢,

2) there exists an element r # 0 so that r S s and r s ¢,
3) there exists an element u € ¢ so that s < u, t S u and

at least one of the conditions st ' #0, s 't# 0 holds.

Further we need a method to solve inequalities given by
such a partial order relation. These inequalities may have a

"recurrent” form like s < rst.

Theorem 3. Inequality s s rst by s # 0 holds in @&, iff
there exist a, b, c € A* so that

ar, = bs ct, = bs and ct, = s_.

By T Ao 2 1! 1 2 2 2

286 1990 FORML Conference Proceedings

—

We finish the study of algebraic properties of ® with
observing infimum and supremum of subsets of ®.
An arbitrary two-element subset { s, t } € ® has the
greatest lower bound, which may be expressed as
S 1 Oy i
Iint sy th = t, if t < s,
0, if s and t are non-comparable.
This definition is obvious (see also Theorem 2). The
notion of supremum is more complicated. For the null-element
we may define sup (r, 0} = r in the case of all r € 9.

Let s, t € ® \ (0 }. If there exist a b, ¢, d, e € A* so

that s = [abd --- abe], t = [cbd --- cbe] and the
length of b is chosen maximal (possible), then there exists
sup (s, t} = [bd --- be].

This choice of b guarantees the defined upper bound to be
the least (see also Theorem 1). If it is impossible to
choose these five strings in any way, then no supremum
exists.
A set of stack operations A and the homomorphism
s :-ﬁ* vt)

induce two languages, named CORRECT(4, s) and CLOSED(4, s)
before. A program ® € CLOSED(A, s) as a whole has neither
input nor output parameters. At the same time parameter
types inside of ® are compatible, i.e. ® is correct. All
"user-oriented" programs must be closed because the stack
is only an implementation-level tool. This point of view

evokes our special interest to the closed programs.

1990 FORML Conference Proceedin gs 287

r

288

We investigate the syntax-directed translation scheme
([AU72]) and try to answer the question if there exists an
algorithm for detecting, whether or not a given scheme
generates only closed programs.

The syntax-directed translation scheme 1is a quintuple
T = (N, Z, A, R, S), which consists of the following
components:

N - a non-terminal alphabet, S € N - a fixed initial symbol
(an axiom), I - an input alphabet, A - an output alphabet

and R is a finite set of translation rules of form

Ao — xaA1x1...xn_1Anxn . zoBiz‘...zn_iann
(ix. & E* . & € a* DAL, B € N: Y, by which the vector
{Bl.....Bnl is some permutation of the vector {Al,....Anl.
If [Bi""'Bn’ = {At,....An) for all rules of R, then

the syntax-directed translation scheme is said to be simple.

The syntax-directed translation scheme defines a set of
pairs (o, W) € E* x A*, which may be derived from the pair
(S, S). The first components of these pairs constitute an
input language of the scheme, the second components - an
output language. The string ® is said to be the transla-
tion of the string o. The translation scheme may also be

treated as a pair of grammars T = (61' G.), defined by R.

2

Let the input grammar G1 be a reduced context-free

grammar ([AU72]). For the output grammar we use a notation
G, = (N, 4, P, S). The output language of T is a set

L. = {t]| ted® & s==>'t}.

. G

2

1990 FORML Conference Proceedings

--IrlIllII--------------.---------------------.---..........

Let the output symbols [l € A have specifications
stll), i.e. s(d)co® \ {0 }.
The syntax-directed translation scheme T is said to be

correct if L2 C CLOSED(4A, s).

The system of inequalities I (T, s) is defined:
1) An unknown Z(A) € & is introduced for =ach A € N,
2) The rules of G, are replaced by inequalities - the rule

of form A — X1 ool Xk induces Z(A) = Y, o s Ylt » where

X ¥ S{Xi), if X € 4, and : R ZIXII, if X, € N. If the

L

right part of the rule is empty, then we take Z(A) S 1.
3) The inequality 1 £ Z(S) is added where S is the axiom

of the scheme T.

The following auxiliary sets are introduced for each

nonterminal symbol A € N:
x x
| s ==>" uav },

ClA) = { (u, v) € 8® x &

+

L{A) = { w e a* | A =" w }.

Theorem 4. The following assertions are equivalent:

1) the syntax-directed translation scheme T is correct,
2) the system of inequalities Tanl P =) is solvable,
3) for each nonterminal symbol A € N there exists a supremum
L

m(A) = sup { [s(vu)]’ (g V€ CLAN 35

by which the following inequality holds

m(A) S inf { s(w) | © € L(A) }.

This theorem allows to check an initial translation

scheme for which Forth is the output language.

1990 FORML Conference Proceedings 289

It may happen that it is hard to classify the
parameters of stack operations beéause there are many
type-independent operations like DUP, SWAP, DROP in
Forth, etc. For that case it is useful to introduce "wild
card" (or "free") symbols, which are able to replace an
arbitrary type name (let us use asterisks to express "wild
card" symbols). The following examples of specifications are
used to illustrate this approach:

DUP [* === * x] copies the top element on the top
of the stack,

SWAP [** x --- x xx]| interchanges two top elements,

! [* addr ---] stores the element of arbitrary
type at addr (mixed specification).

It is possible to generalize the operation of multipli-
cation for "wild card" symbols with some restrictions (no
new "wild cards” may appear on the right side of any spec-

ification). |}

References

[AU72] Aho A.V., Ullman J.D. The theory of parsing, trans-
lation and compiling. vol.l: Parsing. - Englewood
Cliffs, 1972,

[CP67] Clifford A.H., Preston G.B. The algebraic theory of
semigroups. vol.2. - Rhode Island, 1967.

[NP70] Nivat M., Perrot J.F. Une généralisation du monoide
bicycligue. - C. R. Acad. Sci. Paris, 271A, 1970,

p.821-827.

290 1990 FORML Conference Proceedings

	EuroForth1
	EuroForth2
	EuroForth3

